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ABSTRACT

We propose to carry out a classification method for electro-
encephalographic signals (EEG), using the activities of corti-
cal sources estimated with an EEG inverse problem. To over-
come the difficulties caused by the high number of sources
(approximately 10000), we use a multivariate variable se-
lection algorithm: the zero norm Support Vector Machine
(L0-SVM). This technique allows to extract a small subset of
sources, which are the most useful to allow for the discrimi-
nation of the mental states. The whole approach is applied to
an asynchronous Brain Computer Interface (BCI) experiment
from our lab. It outperforms a method based on the direct
measurement of EEG electrodes’ activities.

Index Terms— EEG, Inverse problem, Brain Computer
Interface, Support Vector Machine

1. INTRODUCTION

Brain computer interfacing (BCI) is a challenging applica-
tion aiming at providing a communication channel for com-
pletely paralyzed patients through the real time analysis of
their cerebral functional imaging data during specific men-
tal tasks. This analysis is usually performed in two steps: 1)
quantification of cerebral imaging signals to extract informa-
tive characteristics of cerebral activity, 2) classification of the
quantified data to estimate the mental task being performed.
The most promising non-invasive BCI devices are based on
electro-encephalographic (EEG) signals because of the high
temporal resolution and portability of the recording system.
Nevertheless, the information transfer is limited by a low spa-
tial resolution, as the signal on each EEG sensor can orig-
inate from several brain regions. To overcome that, source
reconstruction methods enable to estimate the electrical ac-
tivity of the populations of cortical neurons from EEG mea-
surements. According to the literature on anatomo-functional
organization of the cortex, this can lead to a better dissociation
of the activities of many task-specific neural networks at this
"source level" compared to the "sensor level". As estimating
cortical source activity requires to solve a largely under deter-
mined inverse problem, many solutions have been proposed
in the literature. Among them, distributed linear inverse so-

lutions such as minimum norm estimate (MNE) [1] are ad-
vantageous because computationally tractable in the real time
context of BCI. These methods enable to estimate simulta-
neously the amplitude of many current elements uniformly
distributed over the cortex using a linear transform of the in-
stantaneous EEG signals. One shortcoming of this approach
is the large amount of equivalent dipoles (usually 10000) in
the model, generating a high number of variables in the quan-
tification step of the BCI device. This leads to an increase of
computational time compared to a usual sensor level analy-
sis and possibly lowers the performance of statistical meth-
ods such as classification algorithms. Moreover, these inverse
solutions are known to generate spatially correlated cortical
activities. Thus selecting a subset of informative quantifica-
tion variables can be sufficient to estimate correctly the men-
tal state of the subject. To reduce the number of quantifica-
tion variables, variable selection techniques can be used to
select the most useful subset of variables for the classification
algorithm. Two approaches can be distinguished: univarate
and multivariate variable selection [2]. In univariate variable
selection, the discriminant power of each variable is evalu-
ated separately, using for example the Fisher score, and is
used to rank the variables. The best ones are then selected for
the classifier. At the opposite, multivariate variable selection
takes into account the variable space as a whole to select the
best subset of variables. The second approach is particularly
well suited in case of redundancy of the quantification vari-
ables. We propose here to exploit EEG source reconstruction
combined to a powerful multivariate selection algorithm to
improve the decoding of mental states on BCI data recorded
in our lab.

2. OVERVIEW OF THE METHOD

The proposed approach is aimed at classifying in real time
mental states from EEG for an asynchronous BCI. In this de-
vice, EEG signals are acquired and processed in real time on
sliding time windows in 3 steps:

1. Source reconstruction: Let M be the (n,T) matrix of
the measured EEG signal recorded during a time win-
dow of T samples. The corresponding amplitude of N
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cortical sources, stored in the matrix J of size (N,T), is
reconstructed using MNE.

2. Quantification of source activities: for each cortical
source, activity is quantified by spectral power in
4 frequency bands. The quantification variables are
concatenated and stored in a feature vector x of size
(4N,1).

3. Classification of brain state: We focus on the case of
binary classification corresponding to a subject switch-
ing between two mental tasks labeled y = 1 for task
1 and y = −1 for task 2. The ongoing mental task
is then estimated by ŷ from the feature vector using a
discriminant function f(x) such that ŷ = sign(f(x)).

Each step of this processing is described in the following
parts.

3. SOURCE RECONSTRUCTION

Our estimate of cortical source activities rests on a forward
model accounting for instantaneous EEG data formation by
equivalent current dipoles whose locations and orientations
are constrained to a surface tessellation of the subject’s corti-
cal mantle (surfacic model) [3, 4]. This leads to the equation:

M = GJ + ε

where M is the matrix of n EEG measurements on the elec-
trode cap; J is a matrix of N elementary source amplitudes
in the model;G is the gain that contains the unitary contribu-
tions of all elementary sources sampled at each electrode; ε

is an additive noise term. As N is very large (≈ 10000) com-
pared to n, computing an estimate Ĵ of J from M is an ill
posed inverse problem that requires additional constraints to
get a unique solution. We used the Minimum Norm Estimate
(MNE) [1] approach whose solution minimizes the objective

||M −GJ ||2 + α||J ||2

where alpha is a regularization parameter. The solution can
then be expressed explicitly by

Ĵ = G
T (GG

T + αIn)−1
M = WM

As the matrixW is only a function of the subjects’ anatomy,
this approach allows fast computation of source amplitude
from EEG measurements. In our settings, according to an
heuristic, alpha is set to 10% of the first eigenvalue ofGG

T .

4. QUANTIFICATION

The spectral power in 4 frequency bands (8-12Hz, 15-20Hz,
20-30Hz et 30-40Hz) is computed for each cortical source
using Welch’s periodogram. This is done through the com-
putation of the cross spectral matrix Γ for the EEG sensors

in each frequency band. The spectral power in the frequency
band B for source i is then computed with the equation:

W iΓ(B)W T
i

Where W i is the i-th line of W . This approach requires the
computations of n Fourier transforms instead of N and is thus
less computationally demanding.

5. CLASSIFICATION

5.1. Basic principles

Standard classification methods can be broadly described as a
two-step procedure:

• First, using a learning set {(xi, yi)}i∈I consisting of
feature vectors xi and their associated class label yi, a
discriminant function f(x) is optimized in order give
the better prediction of the class label using the equa-
tion ŷ = sign(f(x)): this is the training phase.

• Then the resulting discriminant function can be used
to estimate class labels corresponding to new feature
vectors. This is the testing phase, where the classifier
accuracy is quantified by the percentage of correct esti-
mations of the class label.

5.2. Support Vector Machine

The linear Support Vector Machine (SVM) [5] is a state of the
art classification algorithm optimizing a linear discriminant
function of equation f∗(x) = ω

∗
x + b such that

(ω∗, b∗) = arg min
ω,b

‖ω‖
2

under the constraints

∀i, yi(〈ω,xi〉+ b) ≥ 1

The classifier coefficients are computed by solving a dual
problem in R

q , with q the number of elements in the learn-
ing set.

α̂ = arg max
α

∑

i

αi −
1

2

∑

i,j

αiαjyiyj 〈xi,xj〉

Finally the solution writes w
∗ =

∑
α̂ixi. Usually, most of

the coefficients in w
∗ are non-vanishing. Using this method,

classifying a new EEG time window j thus requires to com-
pute all the quantification variables of the feature vector xj .
As this computation must be done in real time, reducing the
number of variables exploited by the classifier is crucial.
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5.3. L0 SVM variable selection

In order to select quantification variables, many methods
are available. A usual technique is univariate selection with
the Fisher score. Let (μ1, μ2) and (σ1, σ2) be the empirical
means and standard deviations of a variable for each class.
The Fisher score of this variable writes F = (μ1−μ2)

2

σ̂2

1
+σ̂2

2 . This
quantity enables to rank the variables and select only a few
of them with the highest scores to feed the classifier. A
shortcoming of this univariate approach is that the selected
variables may be highly redundant, whereas variables giving
additional information can be discarded.
We thus used a multivariate approach through an embed-

ded method enabling the simultaneous computation of the
classifier together with the variable selection. The proposed
classifier is a linear Support Vector Machine where the Eu-
clidian norm in the objective function has been replaced by a
0 norm. The method thus finds an optimal linear discriminant
function of equation f∗(x) = ω

∗
x + b∗ such that

(ω∗, b∗) = arg min
ω,b

‖ω‖0

under the constraints

∀i, yi(〈ω,xi〉+ b) ≥ 1

The 0 norm is equal to the number of non vanishing coeffi-
cients in the vector ω. This is thus equivalent to finding a
linear discriminant function using a minimal number of vari-
ables. Such a method presents the interest to avoid select-
ing redundant variables as univariate variable selection like
Fisher score could do. The exact solution of this classifier
is difficult to compute, nevertheless the recursive algorithm
L2AROM [6] presented below gives an approximate solution
using a vector z of scaling factors associated to each variable:
1. Initialize z = [1, 1, .., 1]T

2. Solve

α̂ = arg max
α

∑

i

αi −
1

2

∑

i,j

αiαjyiyj 〈z ∗ xi,z ∗ xj〉

under the constraints
∑

αiyi = 0 and ∀i, αi ≥ 0
3. Let ŵ =

∑
α̂i(xi ∗ z) from the solution of 2. Iterate

z ← z ∗ |ŵ|
4. Go back to 2 until convergence of z. The solution is
then w

∗ = z ∗ ŵ

This algorithm is thus equivalent to a recursive implemen-
tation of a usual linear SVM. The resulting vector contains
only a few non vanishing coefficients corresponding to se-
lected variables. This method has the advantage, compared
to other embedded methods to have a computational time in-
dependent from the total number of variables since the opti-
mization problem is stated in a dual space. The estimate of
the mental tasks can then be computed in real time using the
expression ŷ = sign(〈w∗,x〉+ b∗).

6. ASYNCHRONOUS BCI EXPERIMENT

This methodology is applied offline to an asynchronous BCI
experiment performed in our lab on 3 subjects. The sub-
jects were asked to perform continuously a mental task in-
dicated on a screen during consecutive 20s epochs. Succes-
sive tasks were separated by a resting period of 3 seconds.
There were six different mental tasks, including three motor
imagery tasks (grasping an object with the right hand, mov-
ing the right finger, moving the tongue) and three non-motor
tasks (visuo-spatial navigation, imagined music, calculation).
These tasks appeared successively in random order on the
screen. For each subject, we recorded 4 to 6 sessions of 6
min each per day during 3 days. The EEG data were recorded
using a 60 electrodes BrainCap. Data were amplified using
a BrainAmps (Brain Products, Inc) 64 channels system sam-
pled to 500Hz. These data are quantified on 2s time windows
with an overlap of .5 s.

7. RESULTS

We performed a cross validation across the days for the three
subjects and each of the 15 possible couple of tasks: clas-
sifiers were trained on one day of experiment and tested on
the others, iteratively for each day, and then the average re-
sult was computed. In order to compare the classifier accu-
racy obtained from the source level quantification and from an
electrode level quantification, the same L0SVM classifier has
been applied using directly the spectral powers of each EEG
sensors in the same 4 frequency bands. The performance of
an univariate variable selection with the Fisher score was also
investigated by preselecting 20 quantification variables at the
source level (corresponding approximately to the number of
variables selected using L0SVM) to feed a usual linear SVM
classifier. The accuracies of the three approaches are reported
for each subject on Table 1, averaged across the 15 possi-
ble discrimination tasks. The average accuracy of L0SVM at
the source level reaches 75% for the best subject using the
source level approach and is significantly higher than the per-
formance obtained at the electrode level (p<.05) with a non
parametric test realized on the 3 subjects. Moreover, the aver-
age accuracy of L0SVM is better than the accuracy obtained
using Fisher score and a linear SVM. The results are encour-
aging as they are obtained using a prediction from one day to
another using a quantification on 2s time windows. The con-
vergence of the scaling factors during training of the classifier
is exemplified on figure 1. As iterations increase, fewer vari-
ables get a high scaling factor compared to the other. Finally,
only approximately 20 on the 40000 original variables are se-
lected in 34 iterations. This illustrates the fast convergence of
the algorithm in spite of the high number of initial variables.
The spatial distribution of these variables on the cortex

is illustrated in Fig 2 for two subjects in interesting frequency
bands for the couple of tasks associated with the best classifier
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Table 1. Comparison between mean classification accu-
racy resulting from power features computed at the cortical
sources’ level compared to electrodes’ level for each subject,
using cross validation across days and averaged over all the
possible couple of discriminant mental tasks.

L0SVM L0SVM Fisher+SVM
source level electrode level source level

subj 1 75.01% ± 2.0 72.76% ± 1.9 67.74% ± 2.1
subj 2 60.67% ± 1.3 61.84% ± 1.0 60.05% ± 1.2
subj 3 65.91% ± 1.2 63.12% ± 1.5 65.05% ± 1.4
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Fig. 1. Example of evolution of the scaling factors in the vec-
tor z, corresponding to each quantification variables as a func-
tion of the number of iteration of the L2AROM algorithm.

accuracy (respectively 84% for subject 1 and 75% for subject
3). The green points indicate the variables selected by the
classifier whereas blue and red colors respectively represent
significant increases and decreases of power in this band when
switching from the first task to the second. In each case, vari-
ables are selected over the brain areas exhibiting significant
increase and decrease of power, but some variables are also
taken outside these regions. This possibly reflects the ability
of the algorithm to select non-redundant variables avoiding
then spatially correlated sources located in a same area.

8. CONCLUSION

We showed that using inverse problem can improve classifica-
tion accuracies for an asynchronous BCI application. More-
over, using L0-SVM variable selection algorithm enable ex-
ploiting this approach in real time by selecting a few relevant
cortical sources for an efficient quantification of the mental
states.

Fig. 2. Selected features (in green) and variables with signifi-
cant t-test for the best couples of classes in 2 subjects.

9. REFERENCES

[1] S Baillet, JC Mosher, and RM Leahy, “Electromagnetic
brain mapping,” IEEE Signal Processing Magazine, vol.
18(6), pp. 14–30, 2001.

[2] I Guyon and A Elisseef, “An introduction to variable and
feature selection,” J. Mach. Learn. Res., vol. 3, pp. 1157–
1182, 2003.

[3] JJ Ermer, JC Mosher, S Baillet, and RM Leahy, “Rapidly
recomputable EEG forward models for realistic head
shapes.,” Phys Med Biol, vol. 46, no. 4, pp. 1265–1281,
Apr 2001.

[4] S Baillet and L Garnero, “A bayesian approach to intro-
ducing anatomo-functional priors in the EEG/MEG in-
verse problem.,” IEEE Trans Biomed Eng, vol. 44, no. 5,
pp. 374–385, 1997.

[5] V Vapnik, Statistical Learning Theory, Wiley-
Interscience, New York, 1998.

[6] J Weston, A Elisseeff, B Schölkopf, and M Tipping, “Use
of the zero norm with linear models and kernel methods,”
J. Mach. Learn. Res., vol. 3, pp. 1439–1461, 2003.

1066


